A weakened ability to effectively resist distraction is a potential basis for reduced working memory capacity (WMC) associated with healthy aging. Exploiting data from 29,631 users of a smartphone game, we show that, as age increases, working memory (WM) performance is compromised more by distractors presented during WM maintenance than distractors presented during encoding. However, with increasing age, the ability to exclude distraction at encoding is a better predictor of WMC in the absence of distraction. A significantly greater contribution of distractor filtering at encoding represents a potential compensation for reduced WMC in older age.T he number of items that can be held in working memory (WM) declines with increasing age (1). Our ability to effectively exclude distractors is one basis for this limited working memory capacity (WMC) (2, 3), with impaired inhibitory processing of distraction contributing to an age-related reduction in WM performance (4). A specific impairment in suppressing distractor representations in older adults has been linked to reduced WMC (5). Typically distractors are presented either with the items to be remembered (encoding distraction, ED, e.g., 6, 7) or while these items are held in mind (delay distraction, DD, e.g., 5, 8). We recently highlighted a distinction between the effects of these two types of distraction in younger adults (9). Although greater WMC is associated with an enhanced ability to exclude distractors in both cases, each makes a unique contribution to WMC (9). Here we examine the well-known age-related reduction in WMC. Previous work has identified an age-related delay in ED filtering (7) and an early age-related deficit in DD suppression (8). We directly compare the age-related decline in ED and DD to assess whether an ability to ignore a distraction at encoding or at delay provides the best predictor of general WMC.We obtained data from 29,631 users of a smartphone game (part of The Great Brain Experiment, www.thegreatbrainexperiment. com), a platform that has enabled us to replicate a range of laboratory studies (9, 10). Using this medium we implemented a WM task to enable us to directly compare the effects of age on WM in the absence of distractors (no distraction, ND; Fig. 1A), when distractors are presented at encoding (ED; Fig. 1B) and when distractors are presented during maintenance (DD; Fig. 1C). This large subject pool enabled us to consider data from six age groups (18-24 y: n = 7,658; 25-29 y: n = 5,702; 30-39 y: n = 8,225; 40-49 y: n = 4,667; 50-59 y: n = 2,359; and 60-69 y: n = 1,020). For each condition the number of items to be remembered (WM load) increased as a function of performance until either eight trials had been completed or a participant failed two successive trials of a given WM load. Data were excluded from participants who failed a "load 2" trial in any condition. For each condition, the participant's score represents the maximum number of items for which they could report all items successfully, representing their WMC.
Results...