In a recent study, Pelli (1999 Science 285 844-846) performed a set of perceptual experiments using portrait paintings by Chuck Close. Close's work is similar to the 'Lincoln' portraits of Harmon and Julesz (1973 Science 180 1194-1197) in that they are composite images consisting of coarsely sampled, individually painted, mostly homogeneous cells. Pelli showed that perceived shape was dependent on size, refuting findings that perception of this type is scale-invariant. In an attempt to broaden this finding we designed a series of experiments to investigate the interaction of 2-D scale and 3-D structure on our perception of 3-D shape. We present a series of experiments where field of view, 3-D object complexity, 2-D image resolution, viewing orientation, and subject matter of the stimulus are manipulated. On each trial, observers indicated if the depicted objects appeared to be 2-D or 3-D. Results for face stimuli are similar to Pelli's, while more geometrically complex stimuli show a further interaction of the 3-D information with distance and image information. Complex objects need more image information to be seen as 3-D when close; however, as they are moved further away from the observer, there is a bias for seeing them as 3-D objects rather than 2-D images. Finally, image orientation, relative to the observer, shows little effect, suggesting the participation of higher-level processes in the determination of the 'solidness' of the depicted object. Thus, we show that the critical image resolution depends systematically on the geometric complexity of the object depicted.