C−H functionalization is one of the most convenient and powerful tools in the arsenal of modern chemistry, deservedly nominated as the “Holy Grail” of organic synthesis. A frequent disadvantage of this method is the need for harsh reaction conditions to carry out transformations of inert C−H bonds, which limits the possibility of its use for modifying less stable substrates. Biomass‐derived furan platform chemicals, which have a relatively unstable aromatic furan core and highly reactive side chain substituents, are extremely promising and valuable organic molecules that are currently widely used in a variety of research and industrial fields. The high sensitivity of furan derivatives to acids, strong oxidants, and high temperatures significantly limits the use of classical methods of C−H functionalization for their modification. New methods of catalytic functionalization of non‐reactive furan cores are urgently required to obtain a new generation of materials with controlled properties and potentially bioactive substances.