Nowadays, the building sector is one of the main sources emitting pollutant gases to the atmosphere due to its deficient energy behaviour. Among the elements of the envelope, the thermal bridges are where the heat losses and gains mainly occur, depending on the season of the year. To reduce the effect of the thermal bridges, there are different patented technologies which give provide solutions. In this paper, the thermal behaviour of five patented slab front (slab-façade) thermal bridges are analysed in a case study located in the south of Spain. Moreover, the influence of the thermal bridge on the energy demand from the building analysed was evaluated, both in the current scenario and future ones (2020, 2050 and 2080). The results reveal that the use of the patents in slab fronts can mean reductions by up to 95.74% in the linear thermal transmittance. Likewise, due to the improvement of the thermal bridge of slab fronts by using the patented designs which offered the best features, a savings in the global energy demand for heating higher than 18% as well as a savings in the global energy demand for cooling higher than 2.80% could be achieved in all the time scenarios considered.