Apart from the forest floor, the canopy of forested ecosystems functions as the second most important source for dissolved and particulate fractions of organic and inorganic C and N compounds. However, under mass outbreak situations of insect herbivores this flux path of organic matter is considerably intensified clearly exceeding C and N fluxes from the forest floor. In this paper we report on herbivore-altered C and N fluxes from the canopy to the forest floor and effects on forest floor nutrient fluxes during severe defoliating herbivory of the winter moth (Operophtera brumata) and the mottled umber moth (Eranis defoliaria) in an oak forest in Germany. Over the course of 6.5 months we followed the C and N fluxes with bulk deposition, throughfall solution, insect frass deposits (green-fall together with insect faeces) and with forest floor solution in an 117-yr-old oak (Quercus petraea) forest. Compared to the control, herbivore defoliation significantly enhanced throughfall inputs of total and dissolved organic carbon and nitrogen by a factor of 3 and 2.5 (for TOC and DOC), and by 1.4 and 1.3 times (for TNb and DNb), respectively. Frass plus green-fall C and N fluxes peaked in May with 592 kg Cha −1 and 33.5 kg N ha −1 representing 79.6% (for C) and 78.3% (for N) of the total C and N input over 2.5 months. The quantitative and qualitative C and N input via faeces and litter deposition significantly differ between the insect affected and non-affected site. However, the C and N fluxes with throughfall did not significantly correlate with forest floor leachates. In this context, forest floor fluxes of TOC, DOC and NO 3 -N were significantly lower at the infested site compared to the control, whereas fluxes of NH 4 -N together with DON were significantly higher. The study demonstrates the importance of linking the population and associated frass dynamics of herbivorous insects with the cycling of nutrients and organic matter in forest ecosystems, highlighting the remarkable alterations in the timing, amounts and nature of organic matter dynamics on the ecosystem level. Consequently, the ecology of phytophagous insects allows partly to explain temporal-spatial alterations in nutrient cycling and thus ecosystem functioning.