Wildfire hazard abatement is one of the major reasons to use prescribed burning. Computer simulation, case studies, and analysis of the fire regime in the presence of active prescribed burning programs in forest and shrubland generally indicate that this fuel management tool facilitates fire suppression efforts by reducing the intensity, size and damage of wildfires. However, the conclusions that can be drawn from the above approaches are limited, highlighting the need for more properly designed experiments addressing this question. Fuel accumulation rate frequently limits prescribed fire effectiveness to a short post-treatment period (2–4 years). Optimisation of the spatial pattern of fire application is critical but has been poorly addressed by research, and practical management guidelines are lacking to initiate this. Furthermore, adequate treatment efforts in terms of fire protection are constrained by operational, social and ecological issues. The best results of prescribed fire application are likely to be attained in heterogeneous landscapes and in climates where the likelihood of extreme weather conditions is low. Conclusive statements concerning the hazard-reduction potential of prescribed fire are not easily generalised, and will ultimately depend on the overall efficiency of the entire fire management process.
During the last decades, climate and land use changes led to an increased prevalence of megafires in Mediterranean-type climate regions (MCRs). Here, we argue that current wildfire management policies in MCRs are destined to fail. Focused on fire suppression, these policies largely ignore ongoing climate warming and landscape-scale buildup of fuels. The result is a 'firefighting trap' that contributes to ongoing fuel accumulation precluding suppression under extreme fire weather, and resulting in more severe and larger fires. We believe that a 'business as usual' approach to wildfire in MCRs will not solve the fire problem, and recommend that policy and expenditures be rebalanced between suppression and mitigation of the negative impacts of fire. This requires a paradigm shift: policy effectiveness should not be primarily measured as a function of area burned (as it usually is), but rather as a function of avoided socio-ecological damage and loss.
Every year worldwide some extraordinary wildfires occur, overwhelming suppression capabilities, causing substantial damages, and often resulting in fatalities. Given their increasing frequency, there is a debate about how to address these wildfires with significant social impacts, but there is no agreement upon terminology to describe them. The concept of extreme wildfire event (EWE) has emerged to bring some coherence on this kind of events. It is increasingly used, often as a synonym of other terms related to wildfires of high intensity and size, but its definition remains elusive. The goal of this paper is to go beyond drawing on distinct disciplinary perspectives to develop a holistic view of EWE as a social-ecological phenomenon. Based on literature review and using a transdisciplinary approach, this paper proposes a definition of EWE as a process and an outcome. Considering the lack of a consistent "scale of gravity" to leverage extreme wildfire events such as in natural hazards (e.g., tornados, hurricanes and earthquakes) we present a proposal of wildfire classification with seven categories based on measurable fire spread and behavior parameters and suppression difficulty. The categories 5 to 7 are labeled as EWE.
Mediterranean landscapes are in a state of flux due to the impacts of changing land‐use patterns and climate. Fuel–weather interactions determine that large, severe wildfires are increasingly common. Prescribed burning in southern Europe is therefore justified by the need to manage fire‐prone vegetation types and maintain cultural landscapes that provide a range of ecosystem services. Prescribed fire has neutral or positive effects on soils and biodiversity, in contrast to wildfires, which can be extremely damaging. However, the limited extent of current applications are unlikely to reduce wildfire hazard or carbon emissions. Adoption of prescribed burning in the Mediterranean region has been slow, uneven, and inconsistent, and its development is constrained by cultural and socioeconomic factors as well as by specific factors related to demography, land use, and landscape structure. Sustainable fire management requires expansion of managers' ability to use prescribed burning, a varied response to unplanned fires, and modified regulation of burning associated with traditional agricultural land uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.