Mediterranean landscapes are in a state of flux due to the impacts of changing land‐use patterns and climate. Fuel–weather interactions determine that large, severe wildfires are increasingly common. Prescribed burning in southern Europe is therefore justified by the need to manage fire‐prone vegetation types and maintain cultural landscapes that provide a range of ecosystem services. Prescribed fire has neutral or positive effects on soils and biodiversity, in contrast to wildfires, which can be extremely damaging. However, the limited extent of current applications are unlikely to reduce wildfire hazard or carbon emissions. Adoption of prescribed burning in the Mediterranean region has been slow, uneven, and inconsistent, and its development is constrained by cultural and socioeconomic factors as well as by specific factors related to demography, land use, and landscape structure. Sustainable fire management requires expansion of managers' ability to use prescribed burning, a varied response to unplanned fires, and modified regulation of burning associated with traditional agricultural land uses.
SummaryMast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown .Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations.Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time.These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data.
Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.