The Upper Permian Longtan Shale is a significant reservoir in western Guizhou. To clarify the main factors controlling the low-mature marine–continental transitional shale pore development in western Guizhou, pore types were classified with scanning electron microscopy (SEM), and the pore developmental stages and morphological structures were quantitatively characterized by nitrogen adsorption isotherm analyses. Additionally, the qualitative or semi-quantitative relationships between the pore developmental stages and the main controlling factors were established via geochemical analysis. The results showed that the Longtan Shale pores include intergranular pores, intragranular pores, organic pores, and microfractures. The intergranular pore structures were categorized into ink-bottle, slit, layered, and irregular types. The intragranular pores were found to be of the elliptical, nearly circular, ink-bottle, and irregular varieties. The organic pores were categorized into elliptical, bubble-like, and irregular polygonal variants. The microfractures were only of the elongated type. The clay-mineral-related intergranular pores were the predominant pore type. The organic pores were found to be poorly developed. The mesopores were predominant, followed by macropores. The shale pore diameters ranged between 1 nm and 100 nm, and they are characterized by multiple peaks. The specific surface area (SSA) was primarily provided by nanopores in the range of 5 nm to 10 nm, such that the smaller pores provided a greater contribution to the SSA, and they are more conducive to shale gas adsorption and accumulation. Clay mineral content was the dominant internal factor controlling pore development and the SSA, with the illite–smectite mixed layer being the most obvious controlling factor. While too low or too high clay mineral content is adverse to macropore development, brittle mineral content, carbonate mineral content, and total organic carbon (TOC) content are adverse to pore development and the SSA. Thermal maturity has no remarkable control effect on pore volume and the SSA of non-organic pores.