2015
DOI: 10.2139/ssrn.2613285
|View full text |Cite
|
Sign up to set email alerts
|

The Information in Systemic Risk Rankings

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
20
0

Year Published

2016
2016
2021
2021

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(23 citation statements)
references
References 55 publications
3
20
0
Order By: Relevance
“…For each month the original data are collected in a N × 6 matrix on which the PCA is performed. Specifically, we extract the first PC which explains between 42 and 60% of the total variance for each period, a result consistent with Nucera et al (2016). Then the first PC on average explains at least more then 50% of the information on risk collected by the 6 indicators.…”
Section: Identification Of Risk Classesmentioning
confidence: 60%
See 3 more Smart Citations
“…For each month the original data are collected in a N × 6 matrix on which the PCA is performed. Specifically, we extract the first PC which explains between 42 and 60% of the total variance for each period, a result consistent with Nucera et al (2016). Then the first PC on average explains at least more then 50% of the information on risk collected by the 6 indicators.…”
Section: Identification Of Risk Classesmentioning
confidence: 60%
“…Specifically, we perform the PCA on the monthly correlation matrix of the original numerical values. In doing so we depart from Nucera et al (2016). Indeed for each indicator they turn the observed data into ranks for the selected units and then they perform the PCA on the resulting transformed data.…”
Section: Proposed Approach For Classification Of Financial Risky Instmentioning
confidence: 99%
See 2 more Smart Citations
“…This may be possibly be because SRISK is a combination of market and balance sheet metrics and as such not purely a market-based measure given the inclusion of leverage. Kleinow et al (2017) empirically Nucera et al (2016) and Giglio et al (2016) both apply principal component analysis to a range of systemic risk measures in the attempt to capture the multiple aspects of systemic risk. A useful discussion on the diculty in nding a measure that can capture all aspects of systemic risk can be found in Hansen (2013).…”
Section: Related Literaturementioning
confidence: 99%