Because of the applications for W/Cu composite materials in high technology, the advantages of synthesizing this alloy by the hydrogen reduction route were investigated, with special attention to the properties of the product that was formed. Kinetic studies of reduction indicated that the mechanism changes significantly at 923 K, and the product had unusual properties. In the present work, morphological studies of the W/Cu alloy with 20 wt% Cu, produced at 923 K, were carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. The structural studies performed by XRD indicated that, at 923 K, Cu dissolved in W, forming a metastable solid solution in the nanocrystalline state. The samples produced at higher as well as lower temperatures, on the other hand, showed the presence of two phases, pure W and pure Cu. The SEM results were in agreement with the XRD analysis and confirmed the formation of W/Cu alloy. TEM analysis results confirmed the above observations and showed that the particle sizes were about 20 nm. The structure of the W/Cu alloy produced in the present work was compared with those for pure Cu, produced from Cu 2 O produced by hydrogen reduction under similar conditions. This indicated that the presence of W hinders the coalescence of Cu particles, and the alloy retains its nano-grain structure.The present results open up an interesting process route toward the production of intermetallic phases and composite materials under optimized conditions.