Dysregulation of hydrogen sulphide (H S) producing enzymes has been related to hypertensive pregnancy, and H S donor, sodium hydrosulphide (NaHS) exerts antihypertensive effects, modulates angiogenic factors production and acts as an antioxidant. Moreover, reduction in nitric oxide (NO) bioavailability is related to hypertensive pregnancy and H S may interact with NO, modulating its production. We aimed to investigate the NaHS effects in hypertension-in-pregnancy and also in feto-placental parameters. Female Wistar rats (200-250 g) were mated and desoxycorticosterone acetate injections followed by replacement of water by 0.9% saline solution were used to induce hypertensive pregnancy. Rats were divided into four groups: normal pregnant (Norm-Preg), pregnant + NaHS (Preg+NaHS), hypertensive pregnant (HTN-Preg) and HTN-Preg+NaHS. Systolic blood pressure was increased in HTN-Preg and this increase was blunted in HTN-Preg+NaHS. Fetal and placental weights were decreased in HTN-Preg animals, while fetal growth restriction was improved in HTN-Preg+NaHS. Placental weight was lower in HTN-Preg+NaHS than in HTN-Preg; however, placental efficiency was re-established in HTN-Preg+NaHS rats. We observed that a partial contribution of placental NO, but not changes in anti-angiogenic factors may mediate the increases in placental efficiency in HTN-Preg+NaHS. HTN-Preg presented thoracic aorta hyperreactivity to phenylephrine while NaHS treatment blunted this hyperreactivity, which seems not to be related to NO-mediated relaxation induced by acetylcholine. Therefore, changes in vascular responsiveness promoted by NaHS treatment may underlie the beneficial effects in systolic blood pressure and feto-placental parameters in our study.