Recently, we studied hepatitis C virus (HCV) sera-prevalence among 559 890 first-time volunteer blood donors in China. From randomly selected 450 anti-HCV positive donors, we detected HCV RNA in 270 donors. In this study, we amplified HCV E1 and/or NS5B sequences from 236 of these donors followed by DNA sequencing and phylogenetic analysis. The results indicate new trends of HCV infection in China. The HCV genotype distribution differed according to the donors’ region of origin. Among donors from Guangdong province, we detected subtypes 6a, 1b, 3a, 3b, 2a, and 1a at frequencies of 49.7%, 31.0%, 7.6%, 5.5%, 4.1%, and 2.1%, respectively. Among donors from outside Guangdong, we detected 1b, 2a, 6a, 3b, 3a, 6e, and 6n at frequencies 57.1%, 13.2%, 11.0%, 9.9%, 4.4%, 2.2%, and 2.2%, respectively. Although we found no significant differences among regions in age or gender, subtype 6a was more common (P< 0.001) in donors from Guangdong than those from elsewhere, whilst subtypes 1b (P< 0.02) and 2a (P < 0.001) were more frequent outside Guangdong. Disregarding origins, the male/female ratio was higher for subtype 6a-infected donors (P < 0.05) than for subtype 1b donors, whilst the mean age of subtype 2a donors was 8–10 years older (P < 0.05) than that for all other subtypes. Detailed phylogenetic analysis of our sequence data provides further insight into the transmission of HCV within China, and between China and other countries. The predominance of HCV 6a among blood donors in Guangdong is striking and mandates studies into risk factors for its acquisition.
BackgroundRecently in China, HCV 6a infection has shown a fast increase among patients and blood donors, possibly due to IDU linked transmission.Methodology/FindingsWe recruited 210 drug users in Shanwei city, Guangdong province. Among them, HCV RNA was detected in 150 (71.4%), both E1 and NS5B genes were sequenced in 136, and 6a genotyped in 70. Of the 6a sequences, most were grouped into three clusters while 23% represent emerging strains. For coalescent analysis, additional 6a sequences were determined among 21 blood donors from Vietnam, 22 donors from 12 provinces of China, and 36 IDUs from Liuzhou City in Guangxi Province. Phylogeographic analyses indicated that Vietnam could be the origin of 6a in China. The Guangxi Province, which borders Vietnam, could be the first region to accept 6a for circulation. Migration from Yunnan, which also borders Vietnam, might be equally important, but it was only detected among IDUs in limited regions. From Guangxi, 6a could have further spread to Guangdong, Yunnan, Hainan, and Hubei provinces. However, evidence showed that only in Guangdong has 6a become a local epidemic, making Guangdong the second source region to disseminate 6a to the other 12 provinces. With a rate of 2.737×10−3 (95% CI: 1.792×10−3 to 3.745×10−3), a Bayesian Skyline Plot was portrayed. It revealed an exponential 6a growth during 1994–1998, while before and after 1994–1998 slow 6a growths were maintained. Concurrently, 1994–1998 corresponded to a period when contaminated blood transfusion was common, which caused many people being infected with HIV and HCV, until the Chinese government outlawed the use of paid blood donations in 1998.Conclusions/SignificanceWith an origin from Vietnam, 6a has become a local epidemic in Guangdong Province, where an increasing prevalence has subsequently led to 6a spread to many other regions of China.
The majority of circular RNAs (circRNAs) spliced from coding genes contain open reading frames (ORFs) and thus, have protein coding potential. However, it remains unknown what regulates the biogenesis of these ORF-containing circRNAs, whether they are actually translated into proteins and what functions they play in specific physiological contexts. Here, we report that a large number of circRNAs are synthesized with increasing abundance when late pachytene spermatocytes develop into round and then elongating spermatids during murine spermatogenesis. For a subset of circRNAs, the back splicing appears to occur mostly at m 6 Aenriched sites, which are usually located around the start and stop codons in linear mRNAs. Consequently, approximately a half of these male germ cell circRNAs contain large ORFs with m 6 A-modified start codons in their junctions, features that have been recently shown to be associated with protein-coding potential. Hundreds of peptides encoded by the junction sequences of these circRNAs were detected using liquid chromatography coupled with mass spectrometry, suggesting that these circRNAs can indeed be translated into proteins in both developing (spermatocytes and spermatids) and mature (spermatozoa) male germ cells. The present study discovered not only a novel role of m 6 A in the biogenesis of coding circRNAs, but also a potential mechanism to ensure stable and long-lasting protein production in the absence of linear mRNAs, i.e., through production of circRNAs containing large ORFs and m 6 A-modified start codons in junction sequences.
Multiple morphological abnormalities of flagella (MMAF) is one kind of severe teratozoospermia. Gene mutations reported in previous works only revealed the pathogenesis of approximately half of the MMAF cases, and more genetic defects in MMAF need to be explored. In the present study, we performed a genetic analysis on Han Chinese men with MMAF using whole‐exome sequencing. After filtering out the cases with known gene mutations, we identified five novel mutation sites in the DNAH2 gene in three cases from three families. These mutations were validated through Sanger sequencing and absent in all control individuals. In silico analysis revealed that these DNAH2 variations are deleterious. The spermatozoa with DNAH2 mutations showed severely disarranged axonemal structures with mitochondrial sheath defection. The DNAH2 protein level was significantly decreased and inner dynein arms were absent in the spermatozoa of patients. ICSI treatment was performed for two MMAF patients with DNAH2 mutations and the associated couples successfully achieved pregnancy, indicating good nuclear quality of the sperm from the DNAH2 mutant patients. Together, these data suggest that the DNAH2 mutation can cause severe sperm flagella defects that damage sperm motility. These results provide a novel genetic pathogeny for the human MMAF phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.