Simultaneous administration of parenteral nutrition (PN) admixtures with intravenous antibiotics is a common clinical problem. Coadministration of drugs incompatible with PN admixture may affect its stability, especially in the context of lipid droplet size, which is a crucial parameter for patient safety. In the present study, we investigate the in vitro compatibility of meropenem (Meropenem 1000, MPM) with five commercial PN admixtures used worldwide: Kabiven, Olimel N9E, Nutriflex Lipid Special, Nutriflex Omega Special, and SmofKabiven. The appropriate volumetric ratios, reflecting their clinical practice ratios, were used to prepare the MPM–PN admixture samples. Physicochemical properties of MPM–PN admixtures samples were determined upon preparation and after four hours of storage. The pH changes for all MPM–PN admixtures samples did not exceed the assumed level of acceptability and ranged from 6.41 to 7.42. After four hours of storage, the osmolarity changes were ±3%, except MPM–Olimel N9E samples, for which differences from 7% to 11% were observed. The adopted level of acceptability of changes in zeta potential after four hours of storage (±3 mV) was met for MPM–Kabiven, MPM–Nutriflex Lipid Special, and MPM–Nutriflex Omega Special. The mean droplet diameter for all samples was below 500 nm. However, only in the case of Nutriflex Lipid Special and Nutriflex Omega Special, the addition of MPM did not cause the formation of the second fraction of lipid droplets. The coadministration of MPM via Y-site with Kabiven, Olimel N9E, and Smofkabiven should be avoided due to osmolarity fluctuations (MPM–Olimel), significant differences in zeta potential (MPM–Olimel, MPM–Smofkabiven), and the presence of the second fraction of lipid droplets >1000 nm (MPM–Kabiven, MPM–Olimel, and MPM–Smofkabiven). The assumed acceptance criteria for MPM compatibility of MPM with PN admixtures were met only for Nutriflex Lipid Special and Nutriflex Omega Special in 1:1, 2:1, and 4:1 volume ratios.