We examine possible temporal variation in a measure of developmental stability, providing insight into the degree of fluctuating asymmetry of several characters of skull morphology, of the common shrew, Sorex araneus L., 1758, in Central Siberia. The level of fluctuating asymmetry during the study period in the beginning of this century (2002–2013) is not correlated with population abundance, while at the end of the last century it was correlated with population abundance, suggesting that high density was the important negative factor affecting breeding females. The absence of an adverse effect of high abundance on developmental stability in the current situation can be related to both an impact of oscillations in environmental conditions and an increase in habitat carrying capacity due to the climate change. Positive correlation of population abundance with the number of adults born last summer and young specimens born this summer indicates the influence of winter and summer conditions on population size. If in the last century developmental stability was correlated with breeding success, indicating that both parameters were affected by the physiological condition of breeding females, in this century these two parameters vary independently, suggesting that breeding success may be affected by other population and habitat factors. Thus, the situation in the population under study is more similar to the noncyclic dynamics than to the four-year cycles, which were revealed for the population in the last century. The results indicate an importance of monitoring possible changes in developmental stability measure, as another population parameter, under climate change.