Summary1. Population cycles in voles are often thought to be generated by one-year delayed density dependence on the annual population growth rate. In common voles, however, it has been suggested by Turchin (2003) that some populations exhibit first-order cycles, resulting from strong overcompensation (i.e. carrying capacity overshoots in peak years, with only an effect of the current year abundance on annual growth rates). 2. We focus on a common vole (Microtus arvalis) population from western France that exhibits 3-year cycles. Several overcompensating nonlinear models for populations dynamics are fitted to the data, notably those of Hassell, and Maynard-Smith and Slatkin. 3. Overcompensating direct density dependence (DD) provides a satisfactory description of winter crashes, and one-year delayed density dependence is not responsible for the crashes, thus these are not classical second-order cycles. A phase-driven modulation of direct density dependence maintains a low-phase, explaining why the cycles last three years instead of two. Our analyses suggest that some of this phase dependence can be expressed as one-year delayed DD, but phase dependence provides a better description. Hence, modelling suggests that cycles in this population are first-order cycles with a low phase after peaks, rather than fully second-order cycles. 4. However, based on the popular log-linear second-order autoregressive model, we would conclude only that negative delayed density dependence exists. The additive structure of this model cannot show when delayed DD occurs (here, during lows rather than peaks). Our analyses thus call into question the automated use of second-order log-linear models, and suggests that more attention should be given to non-(log)linear models when studying cyclic populations. 5. From a biological viewpoint, the fast crashes through overcompensation that we found suggest they might be caused by parasites or food rather than predators, though predators might have a role in maintaining the low phase and spatial synchrony.
Common voles in western France exhibit three‐year population cycles with winter crashes after large outbreaks. During the winter of 2011–2012, we monitored survival, reproduction, recruitment and population growth rate of common voles at different densities (from low to outbreak densities) in natura to better understand density dependence of demographic parameters. Between October and April, the number of animals decreased irrespective of initial density. However, the decline was more pronounced when October density was higher (loss of ≈54 % of individuals at low density and 95 % at high density). Using capture‐mark‐recapture models with Pradel's temporal symmetry approach, we found a negative effect of density on recruitment and reproduction. In contrast, density had a slightly positive effect on survival indicating that mortality did not drive the steeper declines in animal numbers at high density. We discuss these results in a population cycle framework, and suggest that crashes after outbreaks could reflect negative effects of density dependence on reproduction rather than changes in mortality rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.