The mining of layered soft bauxite under coal seams (BCS) will cause serious underground goaf disasters and surface Bayer process red mud (BRM) pollution. In order to realize the safe and efficient mining of BCS, the feasibility of recycling BRM as a backfilling aggregate was explored. A series of tests were conducted to prevent the pollution diversion of BRM from surface storage to underground goafs, and a numerical simulation analysis of the backfilling mining process was carried out based on FLAC3D to protect the overlying coal seam. The results show that: under the action of encapsulation, solidification and inhibiting precipitation from cementitious materials, the leaching concentration of harmful substances in red mud-based cemented backfill (RCB) can be reduced 70% more than fresh BRM. Mining disturbance redistributes the in-situ stress field of overlying strata; normal backfilling can not only reduce the pressure stress of pillars, but also release the tensile stress in the roof and floor from +0.4956 MPa to −0.1992 MPa, effectively preventing roof subsidence. Since the creep damage process of past backfill will absorb and dissipate lots of energy, the disturbance range caused by backfill mining is controlled within 3 m, which is only 10% of the open-stope method.