Abstract:In medicine, artificial neural networks (ANN) have been extensively applied in many fields to model the nonlinear relationship of multivariate data. Due to the difficulty of selecting input variables, attribute reduction techniques were widely used to reduce data to get a smaller set of attributes. However, to compute reductions from heterogeneous data, a discretizing algorithm was often introduced in dimensionality reduction methods, which may cause information loss. In this study, we developed an integrated method for estimating the medical care costs, obtained from 798 cases, associated with myocardial infarction disease. The subset of attributes was selected as the input variables of ANN by using an entropy-based information measure, fuzzy information entropy, which can deal with both categorical attributes and numerical attributes without discretization. Then, we applied a correction for the Akaike information criterion ( ) to compare the networks. The results revealed that fuzzy information entropy was capable of selecting input variables from heterogeneous data for ANN, and the proposed procedure of this study provided a reasonable estimation of medical care costs, which can be adopted in other fields of medical science.