Background
Our previous studies indicated that NMDA receptor (NMDAR) deletion from a subset of corticolimbic interneurons in the mouse brain during early postnatal development is sufficient to trigger several behavioral and pathophysiological features resembling the symptoms of human schizophrenia. Interestingly, many of these behavioral phenotypes are exacerbated by social isolation stress. However, the mechanisms underlying the exacerbating effects of social isolation are unclear.
Methods
Using GABAergic interneuron-specific NMDAR hypofunction mouse model (Ppp1r2-cre/fGluN1 KO mice), we investigated whether oxidative stress is implicated in the social isolation-induced exacerbation of schizophrenia-like phenotypes and further explored the underlying mechanism of elevated oxidative stress in KO mice.
Results
The reactive oxygen species (ROS) level in the cortex of group-housed KO mice was normal at eight weeks although increased at 16 weeks old. Post-weaning social isolation (PWSI) augmented the ROS levels in KO mice at both ages, which was accompanied by the onset of behavioral phenotype. Chronic treatment with apocynin, an ROS scavenger, abolished markers of oxidative stress and partially alleviated schizophrenia-like behavioral phenotypes in KO mice. Markers of oxidative stress following PWSI were especially prominent in cortical parvalbumin (PV)-positive interneurons. The vulnerability of PV interneurons to oxidative stress was associated with down-regulation of peroxisome proliferator-activated receptor α coactivator-13 (PGC-1α), a master regulator of mitochondrial energy metabolism and antioxidation.
Conclusions
These results suggest that a PWSI-mediated impairment in antioxidant defense mechanisms, presumably mediated by PGC-1α downregulation in the NMDAR-deleted PV-positive interneurons, results in oxidative stress, which, in turn, may contribute to exacerbation of schizophrenia-like behavioral phenotypes.