This work tries to present theoretical studies and docking analysis on the small novel molecule irilone as a progesterone receptor (PR) effect supporter in endometrial and ovarian cancer cell lines. The quantum mechanical computations are done using B3LYP/6-31+G(d,p) level of theory on the molecule under study at room temperature. The theoretical calculations showed that irilone is a stable small molecule with high electrophilicity property. The density of states (DOS) graph indicated that the virtual orbitals of the said compound have more density than that of the occupied orbitals. The studies indicated that the title compound can make a complex with progesterone receptor (PR) using steric and hydrogen bond (HB) interactions. The docking analysis showed that the receptor (PR-B isoform) residues Pro-696, Gln-725, Met-759, Arg-766, Glu-695, Asp-697, Leu-758, Lys-822, Ile-699, Val-698 and Trp-755 play the main role in receptor-ligand complex formation.agents. On the other hand, the electronic properties study showed that the title molecule likes to make complex with progesterone receptor (PR) by steric and hydrogen bond interactions. The ligand-receptor docking analysis indicated that the receptor (PR-B isoform) residues Pro-696, Gln-725, Met-759, Arg-766, Glu-695, Asp-697, Leu-758, Lys-822, Ile-699, Val-698 and Trp-755 play the main role in irilone-PRB complex formation.