Die Verwendung von photolabilen Schutzgruppen zur nicht-invasiven Kontrolle von Systemen birgt ein großes Potential für verschiedenste Anwendungsgebiete, die von der Erforschung und Regulation biologischer Prozesse, über den Einsatz in medizinischer Therapie bis hin zur Verwendung als molekulare Datenspeicher reichen. Für diese Umsetzung benötigt es allerdings eine breite Auswahl an entsprechenden PPGs und das Wissen über ihre Reaktionsmechanismen. Im Allgemeinen lässt sich die Konzeptionierung von PPGs in drei Prozesse einteilen, beginnend bei dem Design und der Synthese einer neuen PPG. Bei diesem Schritt liegt der Fokus auf ein oder zwei besonderen Eigenschaften, wie beispielsweise einer Absorptionswellenlänge in einem bestimmten Spektralbereich oder einer hohen Uncaging-Quantenausbeute. Im zweiten Schritt folgt die Untersuchung der PPG bezüglich spektroskopischer und mechanistischer Eigenschaften und ggf. anschließender Optimierung auf synthetischer Ebene. Die so gewonnenen Informationen sind dann hilfreich bei dem letzten Schritt, bei dem es um den Einsatz der PPG in einem entsprechenden System geht. Hierbei müssen die verwendeten PPGs genau auf das Zielsystem abgestimmt sein, dazu zählen verschiedenste Parameter wie Anregungswellenlänge, Extinktionskoeffizient, Art und Struktur der Photoprodukte sowie Uncaging-Effizienz und Geschwindigkeit. In der vorliegenden Arbeit wurde über die drei vorgestellten Projekte mittels spektroskopischer Methoden zu allen drei genannten Stadien zur Konzeptionierung von PPGs ein Beitrag geleistet. Dazu zählt die Entwicklung der CBT-basierten PPGs, die Untersuchung der Struktur-Wirkungsbeziehung von (DMA)(2)F-PPGs und die Etablierung einer wellenlängenselektiven An-/Aus-Funktionalität eines Antibiotikums. In enger interdisziplinärer Zusammenarbeit zwischen theoretischen, synthetischen und biologischen Teilgebieten konnte jedes Projekt innerhalb der jeweiligen Entwicklungsstufe erfolgreich abgeschlossen werden. Mithilfe des relativ neuen Ansatzes, bei dem durch quantenmechanische Berechnungen der vertikalen Anregungsenergie von der kationischen Spezies einer PPG-Grundstruktur eine Aussage über ihre Qualität postuliert werden kann, konnte ausgehend von der Fluoren-Grundstruktur eine neue Klasse von PPGs gefunden werden. Dabei erwies sich die CBT-Struktur mit den Schwefelatomen an der para-Position als besonders geeignet. Insbesondere konnte die Grundstruktur durch die (OMePh)2-Substitution, welche in einer signifikanten bathochromen Verschiebung des Absorptionsmaximums resultierte, optimiert werden. Die Untersuchung der Ultrakurzzeit-Dynamik beider p-CBT Strukturen gab Aufschluss über die unterschiedlichen photochemischen Eigenschaften als PPG. Für die Stoffklasse der Dimethylamino-Fluorene wurde ein wichtiger Unterschied zwischen den einfach- und zweifach-substituierten Derivaten aufgedeckt, der entscheidend für einen signifikanten Uncaging-Effizienzunterschied ist. Dabei stellt sich die Stabilität des symmetrisch-substituierten Fluorenyl-Kations als der wichtigste Faktor bezüglich der Uncaging-Quantenausbeuten heraus. Beide Schutzgruppen sind in der Lage photoinduziert eine AG freizusetzen, wobei der Reaktionsmechanismus über die kationische Spezies (DMA)(2)F + abläuft. Der Unterschied hierbei liegt in der Lebensdauer der beiden Kationen, die im Falle der symmetrischen PPG stark lösungsmittelabhängig ist und bis zu mehreren Stunden betragen kann, was bis dato das langlebigste Kation dieser Molekülklasse darstellt. Für die zukünftige Optimierung dieser PPG-Klasse ist die Erkenntnis über die Gründe für die Stabilität des Kations von großem Vorteil. Der stabilisierende Faktor ist zum einen die zweite Dimethylamino-Gruppe der symmetrischen Verbindung, welche durch die Erweiterung der Mesomerie zur besseren Verteilung der positiven Ladung im Molekül führt. Zum anderen spielt das Lösungsmittel eine entscheidende Rolle. Dabei bieten protische, polare Medien eine zusätzliche Stabilisierung, die notwendig für die Langlebigkeit des Kations ist. Die Lebensdauer des Kations war zudem durch eine zweite Bestrahlungswellenlänge kontrollierbar. Ausgehend vom Kation konnte eine reversible Nebenreaktion in protischen Lösungsmitteln identifiziert werden, die einen Austausch der AG durch das Lösungsmittel darstellt. Zusätzlich konnte die kleine Stoffklasse der bisher bekannten Photobasen durch die Verbindung (DMA)2F-OH erweitert werden. Genauer betrachtet handelt es sich dabei um eine photoinduzierte Hydroxidfreisetzung, wodurch je nach eingesetzter Konzentration ein pH-Sprung von bis zu drei Einheiten erreicht werden konnte. Dabei stellt sich die Lebensdauer des pH-Sprungs als ein entscheidender Parameter für Photobasen dar, welcher sich für die hier untersuchte Verbindung aufgrund der besonderen Stabilität des entsprechenden Kations, im Vergleich zu einigen der bereits bekannten Verbindungen, als besonders langlebig herausgestellt hat. Ein weiterer Vorteil des Einsatzes von (DMA)2F-OH als Photobase ist die Möglichkeit den pH-Sprung durch zwei verschiedene Wellenlängen sowohl zeitlich als auch örtlich zu kontrollieren, indem die Verbindung zwischen den zwei Spezies (DMA)2F-OH und (DMA)2F + geschaltet werden kann. Im Hinblick auf die Anwendungen von PPGs zur verbesserten zeitlichen und örtlichen Kontrolle biologischer Zielsysteme ist im Rahmen dieser Arbeit das Prinzip vom wellenlängenselektiven Uncaging zweier PPGs an einem Molekül (two-PPG-one-molecule, TPOM) etabliert worden. Das Zielmolekül war hier das Antibiotikum Puromycin, welches durch seine Fähigkeit an das Ribosom zu binden, die Proteinbiosynthese inhibieren kann. Dabei wurden zwei verschiedene PPGs gefunden, die sowohl aufeinander als auch auf das Biomolekül selbst abgestimmt sind. Im Ausgangszustand sind beide PPGs am Puromycin angebracht, wodurch es in seiner biologischen Wirkung inaktiv ist. Befindet sich das doppelt geschützte Puromycin in der ROI, so kann es durch die Bestrahlung mit einer bestimmten Wellenlänge infolge des ersten Uncaging-Schritts aktiviert werden. Da biologische Systeme nicht statisch sind, können aktivierte Moleküle stets von der gewünschten ROI nach außen gelangen, wodurch der Anspruch der räumlichen Kontrolle nicht erfüllt wird. In diesem Fall kann durch die TPOM-Umsetzung die zweite Bestrahlungswellenlänge auf den entsprechenden Bereich angewendet werden, wodurch das Uncaging der zweiten PPG initiiert und folglich das Puromycin deaktiviert wird. Des Weiteren konnte gezeigt werden, dass die Deaktivierungswellenlänge auch in der Lage ist beide PPGs zu entfernen, wodurch eine vollständige Inaktivierung des Puromycins außerhalb der ROI garantiert werden kann. Ist die Proteinbiosynthese längerfristig blockiert, führt das schließlich zum Zelltod. Ein großes Anwendungsgebiet dieses Antibiotikums sind die Neurowissenschaften. Aufgrund der Tatsache, dass Puromycin keine Unterscheidung zwischen eukaryotischen und prokaryotischen Zellen macht, findet es keine Anwendung in der Medizin. Eine zeitliche und örtliche Kontrolle seiner Wirkung könnte den Anwendungsbereich dieses Antibiotikums evtl. ausweiten. Das wohl naheliegendste wäre der Einsatz bei Tumorzellen, deren Behandlung durch Zytostatika auf den gesamten Körper wirken und dadurch viele schwere Nebenwirkungen verursachen. Wie bereits weiter oben beschrieben muss für jedes Biomolekül und das entsprechende Wirkzentrum die Auswahl des passenden PPG-Paares einzeln abgestimmt werden. Dennoch lässt sich anhand des hier etablierten Systems ein Konzept für die erfolgreiche Umsetzung zukünftiger TPOM-Systeme an anderen biomolekularen Wirkstoffen zusammenfassend formulieren. * Der erste Schritt sollte die Betrachtung des Wirkzentrums des zu modifizierenden Biomoleküls sein: Welche funktionelle Gruppe bzw. Gruppen sind entscheidend für die Bindetasche oder –stelle? Dieser Bereich des Biomoleküls soll im Zuge des Uncagings entweder blockiert oder abgespalten werden. In der unmittelbaren Nähe muss die PPG1 angebracht werden. * Bei der Wahl von PPG1 ist das wichtigste Kriterium, dass das Biomolekül mit enthaltener Schutzgruppe in seiner Wirkung unbeeinträchtigt bleibt. Dies schränkt die Auswahl beträchtlich ein. Eine mögliche Umsetzung wäre die Anbringung einer Nitro-Gruppe falls vorhanden an einen Benzolring, welcher sich im Fall eines großen Biomoleküls in der Nähe der wichtigen funktionellen Stelle befindet. * Die zweite PPG (PPG2), deren photoinduzierte Abspaltung zur Aktivierung des Wirkstoffs führen soll, kann strukturell frei gewählt werden. Das Auswahlkriterium hierbei ist das Absorptionsspektrum. Hierbei sollte das Absorptionsmaximum rotverschoben zur PPG1 sein, um eine unerwünschte Abspaltung zu vermeiden. Außerdem darf keine signifikante Absorption von PPG2 bei der Uncaging-Wellenlänge von PPG1 vorhanden sein. * Beide PPGs sollten eine ähnliche Uncaging-Quantenausbeute vorweisen, um im Deaktivierungsschritt der doppelt geschützten Verbindung durch das höher energetische Licht keine Bevorzugung einer einzelnen Schutzgruppe zu riskieren. Anhand der erarbeiteten Herangehensweise können weitere Wirkstoffe oder Biomoleküle hin zu einer An- / Aus-Funktionalität modifiziert werden. Mit der Umsetzung des TPOM-Konzepts kann eine Verbesserung der örtlichen und zeitlichen Kontrolle der Aktivität eines Antibiotikums erreicht werden. Für die Anwendung in biologischer Umgebung ist diese präzische Kontrolle essentiell, um unerwünschte Nebenwirkungen angesundem Gewebe zu verhindern.