In human, mouse, and rat pregnancy, maternal NK cells accumulate and differentiate at implantation sites. These cells, termed uterine NK (uNK) cells, express NO synthase (NOS)-2 and develop cytolytic molecules such as perforin and granzymes during differentiation in situ. In this study, relationships between expression of the NOS-2 gene, uNK cell population density and tissue distribution, and synthesis of perforin were investigated. Uteri from wild-type (WT) and NOS-2−/− mice were collected at gestation days (g.d.) 8, 10, 12, 14, and 16 (n, >2/g.d.). Histochemical staining failed to reveal any differences between the population densities or tissue distributions of uNK cells in WT and NOS-2−/− uteri at any stage of gestation. By contrast, immunohistochemical staining with anti-perforin Abs demonstrated significantly fewer perforin-positive uNK cells in two uterine compartments of NOS-2−/− mice in comparison to the same compartments in WT mouse uteri. Perforin-positive uNK cells were reduced in NOS-2−/− metrial glands at g.d. 8, 10, and 12 and in decidua basalis at g.d. 12 (p < 0.05). Analysis of perforin protein by immunoblotting confirmed this observation. Northern blot hybridization studies showed that loss of perforin protein in NOS-2−/− mice was accompanied by decreased steady-state levels of perforin mRNA. These results demonstrate that migration of uNK cells into the uterus, selection of residency sites, and proliferation in situ are independent of NOS-2. By contrast, their differentiation, including transcription and translation of the cytotoxic molecule perforin, was shown to rely on normal expression of the NOS-2 gene.