One of the biggest unsolved problems in physics is the particle masses of all elementary particles which cannot be calculated accurately and predicted theoretically. In this paper, the unsolved problem of the particle masses is solved by the accurate mass formulas which calculate accurately and predict theoretically the particle masses of all leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays (the knees-ankles-toe) by using only five known constants: the number (seven) of the extra spatial dimensions in the eleven-dimensional membrane, the mass of electron, the masses of Z and W bosons, and the fine structure constant. The calculated masses are in excellent agreements with the observed masses. For examples, the calculated masses of muon, top quark, pion, neutron, and the Higgs boson are 105.55 MeV, 175.4 GeV, 139.54 MeV, 939.43 MeV, and 126 GeV, respectively, in excellent agreements with the observed 105.65 MeV, 173.3 GeV, 139.57 MeV, 939.27 MeV, and 126 GeV, respectively. The mass formulas also calculate accurately the masses of the new particle at 750 GeV from the LHC and the new light boson at 17 MeV. The theoretical base of the accurate mass formulas is the periodic table of elementary particles. As the periodic table of elements is derived from atomic orbitals, the periodic table of elementary particles is derived from the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbitals. All elementary particles including leptons, quarks, gauge bosons, the Higgs boson, and cosmic rays can be placed in the periodic table of elementary particles. The periodic table of elementary particles is based on the theory of everything as the computer simulation model of physical reality consisting of the mathematical computation, digital representation and selective retention components. The computer simulation model of physical reality provides the seven principal mass dimensional orbitals and seven auxiliary mass dimensional orbitals for the periodic table of elementary particles.