The tracheal (respiratory) system is regarded as one of the key elements which enabled insects to conquer terrestrial habitats and, as a result, achieve extreme species diversity. Despite this fact, anatomical data concerning this biological system is relatively scarce, especially in an ontogenetic context. The purpose of this study is to provide novel and reliable information on the post-embryonic development of the tracheal system of holometabolous insects using micro-computed tomography methods. Data concerning the structure of the respiratory system acquired from different developmental stages (larvae, pupae and adults) of a single insect species (Tenebrio molitor) are co-analysed in detail. Anatomy of the tracheal system is presented. Sample sizes used (29 individuals) enabled statistical analysis of the results obtained. The following aspects have been investigated (among others): the spiracle arrangement, the number of tracheal ramifications originating from particular spiracles, the diameter of longitudinal trunks, tracheal system volumes, tracheae diameter distribution and fractal dimension analysis. Based on the data acquired, the modularity of the tracheal system is postulated. Using anatomical and functional factors, the following respiratory module types have been distinguished: cephalo-prothoracic, metathoracic and abdominal. These modules can be unambiguously identified in all of the studied developmental stages. A cephalo-prothoracic module aerates organs located in the head capsule, prothorax and additionally prolegs. It is characterised by relatively thick longitudinal trunks and originates in the first thoracic spiracle pair. Thoracic modules support the flight muscles, wings, elytra, meso- and metalegs. The unique feature of this module is the presence of additional longitudinal connections between the neighbouring spiracles. These modules are concentrated around the second prothoracic and the first abdominal spiracle pairs. An abdominal module is characterised by relatively thin ventral longitudinal trunks. Its main role is to support systems located in the abdomen; however, its long visceral tracheae aerate organs situated medially from the flight muscles. Analysis of changes of the tracheal system volume enabled the calculation of growth scaling among body tissues and the volume of the tracheal system. The data presented show that the development of the body volume and tracheal system is not linear in holometabola due to the occurrence of the pupal stage causing a decrease in body volume in the imago and at the same time influencing high growth rates of the tracheal system during metamorphosis, exceeding that ones observed for hemimetabola.