Recent genetic and biochemical studies have revealed the existence in plants of a fourth RNA polymerase, RNAPIV, which mediates siRNA accumulation and DNA methylation-dependent silencing of endogenous repeated sequences. Here, we show that Arabidopsis expresses, in fact, two evolutionarily related forms of RNAPIV, hereafter referred to as RNAPIVa and RNAPIVb. These two forms contain the same second-largest subunit (NRPD2), but differ at least by their largest subunit, termed NRPD1a and NRPD1b. Unlike NRPD1a, NRPD1b possesses a reiterated CTD, a feature that also characterizes the largest subunit of RNAPII. Our data indicate that RNAPIVb is the most abundant form of RNAPIV in Arabidopsis. Selective disruption of either form of RNAPIV indicates that RNAPIVa-dependent siRNA accumulation is not sufficient per se to drive robust silencing at endogenous loci and that high levels of DNA methylation and silencing depend on siRNA that are accumulated through a pathway involving the concerted action of both RNAPIV forms. Taken together, our results imply the existence of a novel two-step mechanism in siRNA synthesis at highly methylated loci, with RNAPIVb being an essential component of a self-reinforcing loop coupling de novo DNA methylation to siRNA production. A major evolutionary distinction separating prokaryotes from eukaryotes is the passage from a unique multisubunit DNA-dependent RNA polymerase enzyme (RNAP) to three complexes (Roeder and Rutter 1969), each responsible for the transcription of a subclass of nuclear DNA sequences (Sentenac 1985). RNA polymerase I (RNAPI) transcribes the repeated genes encoding the large ribosomal RNAs, which represent up to four-fifths of total RNA. RNA polymerase II (RNAPII) transcribes all of the cell protein-coding messenger RNAs (mRNAs) as well as some small nuclear RNAs (snRNAs). RNA polymerase III (RNAPIII) is dedicated to the transcription of a collection of genes whose main common feature is that they encode structural or catalytic RNAs (tRNAs, 5S RNA, snRNA) that are components of protein synthesis, splicing, and tRNA processing apparatuses. It is believed that this triplication event provided the eukaryotic cell with a greater flexibility toward energy-consuming cellular functions such as ribosome synthesis, as well as with more sophisticated means for the regulation of gene expression.Prokaryotic and eukaryotic RNA polymerases are multisubunit enzymes that are evolutionarily related to each other through their largest and second-largest subunits (Ebright 2000;Cramer 2002). The largest subunit (≈160 kDa: Ј; A; RPA1; RPB1; RPC1) contains eight regions conserved in order and sequence (A to H), while the second-largest subunit (≈150 kDa: ; B; RPA2; RPB2; RPC2), contains nine such regions (A to I) (Allison et al. 1985;Sweetser et al. 1987). Although the role of these conserved domains is not yet fully understood, the structure determination of RNAPII suggests that they cooperate in the formation of a single fold cleft containing the active site of the enzyme (Cramer et al....