Abstract:The naked-eye appearance of the urine must have been studied by shamans and healers since the Stone Age, and an elaborate interpretation of so-called Uroscopy began around 600 AD as a form of divination. A 1000 years later, the first primitive monocular and compound microscopes appeared in the Netherlands, and along with many other objects and liquids, urine was studied from around 1680 onwards as the enlightenment evolved. However, the crude early instruments did not permit fine study because of chromatic and linear/spherical blurring. Only after complex multi-glass lenses which avoided these problems had been made and used in the 1820s in London by Lister, and in Paris by Chevalier and Amici, could urinary microscopy become a practical, clinically useful tool in the 1830s. Clinical urinary microscopy was pioneered by Rayer and his pupils in Paris (especially Vigla), in the late 1830s, and spread to UK and Germany in the 1840s, with detailed descriptions and interpretations of cells and formed elements of the urinary sediment by Nasse, Henle, Robinson and Golding Bird. Classes were held, most notably by Donné in Paris. After another 50 years, optical microscopy had reached its apogee, with magnifications of over 1000 times obtainable free of aberration, using immersion techniques. Atlases of the urinary sediment were published in all major European countries and in the US. Polarised light and phase contrast was used also after 1900 to study urine, and by the early 20th century, photomicroscopy (pioneered by Donné and Daguerre 50 years previously, but then ignored) became usual for teaching and recording. In the 1940s electron microscopy began, followed by detection of specific proteins and cells using immunofluorescent antibodies. All this had been using handheld methodology. Around 1980, machine-assisted observations began, and have dominated progress since.