Abstract-McCabe's Cyclomatic Complexity (MCC) is a widely used metric for the complexity of control flow. Common usage decrees that functions should not have an MCC above 50, and preferably much less. However, the Linux kernel includes more than 800 functions with MCC values above 50, and over the years 369 functions have had an MCC of 100 or more. Moreover, some of these functions undergo extensive evolution, indicating that developers are successful in coping with the supposed high complexity. We attempt to explain this by analyzing the structure of such functions and showing that in many cases they are in fact well-structured. At the same time, we observe cases where developers indeed refactor the code in order to reduce complexity. These observations highlight the need to define more holistic notions of complexity, rather than using simple syntactic code metrics.