Non-pairwise additive three-body dispersion potentials dependent upon one or more electric octupole moments are evaluated using the theory of molecular quantum electrodynamics. To simplify the perturbation theory calculations, an effective two-photon interaction Hamiltonian operator is employed. This leads to only third-order theory being required to evaluate energy shifts instead of the usual sixth-order formula, and the summation over six time-ordered sequences of virtual photon creation and annihilation events. Specific energy shifts computed include DD-DD-DO, DD-DO-DO, DO-DO-DO, and DD-DO-OO terms, where D and O are electric dipole and octupole moments, respectively. The formulae obtained are applicable to an arbitrary arrangement of the three particles, and we present explicit results for the equilateral triangle and collinear configurations, which complements the recently published DD-DD-OO potential. In this last case it was found that the contribution from the octupole weight-1 term could be viewed as a higher-order correction to the triple-dipole dispersion potential DD-DD-DD. In a similar fashion the octupole moment is decomposed into its irreducible components of weights-1 and -3, enabling insight to be gained into the potentials obtained in this study. Dispersion interaction energies proportional to mixed dipole-octupole polarisabilities, for example, are found to depend only on the weight-1 octupole moment for isotropic species and are retarded. Additional approximations are necessary in the evaluation of wave vector integrals for these cases in order to yield energy shifts that are valid in the near-zone.