Covalent organic frameworks (COFs) are an advanced class of crystalline porous polymers that have garnered significant interest due to their tunable properties and robust molecular architectures. As a result, COFs with energy-storage properties are of particular interest to the field of rechargeable battery electrode materials. However, investigation into COFs as candidates for energy-storage materials is still in its infancy. This review will highlight methods used to fabricate COFs used as electrode materials and discuss the factors that prove critical for their production. A collection of known COF-based energy-storage systems will be featured. In addition, the ability to utilize the storage properties of COFs for systems beyond traditional Li-ion batteries will be addressed. An outlook will address the current progress and remaining challenges facing the field to ultimately expand the scope of their applications.