SUMMARYArthropod-borne viruses have emerged as a major human health concern. Viruses transmitted by mosquitoes are the cause of the most serious and widespread arbovirus diseases worldwide and are ubiquitous in both feral and urban settings. Arboviruses, including dengue and West Nile virus are injected into vertebrates within mosquito saliva during mosquito feeding. Mosquito saliva contains anti-haemostatic, anti-inflammatory and immunomodulatory molecules that facilitate the acquisition of a blood-meal. Collectively, studies investigating the effects of mosquito saliva on the vertebrate immune response suggest that at high concentrations salivary proteins are immmunosuppressive, whereas lower concentrations modulate the immune response; specifically, T H 1 and antiviral cytokines are down-regulated, while T H 2 cytokines are unaffected or amplified. As a consequence, mosquito saliva can impair the anti-viral immune response thus affecting viral infectiousness and host survival. Mounting evidence suggests that this is a mechanism whereby arbovirus pathogenicity is enhanced. In a range of disease models, including various hosts, mosquito species, and arthropodborne viruses, mosquito saliva and/or feeding is associated with a potentiation of virus infection. Compared to arbovirus infection initiated in absence of the mosquito or its saliva, infection including mosquito saliva leads to an increase in virus transmission, host susceptibility, viraemia, disease progression, and mortality.Keywords arthropod-borne virus; mosquito saliva; immunomodulation; disease enhancement Most arthropod-borne (arbo)viruses of public health significance are mosquito-borne, and thus transmitted to vertebrates via the feeding of an infected mosquito. For a mosquito to