The Lyme disease agent, Borrelia burgdorferi, is maintained in a tick-mouse cycle. Here we show that B. burgdorferi usurps a tick salivary protein, Salp15 (ref. 3), to facilitate the infection of mice. The level of salp15 expression was selectively enhanced by the presence of B. burgdorferi in Ixodes scapularis, first indicating that spirochaetes might use Salp15 during transmission. Salp15 was then shown to adhere to the spirochaete, both in vitro and in vivo, and specifically interacted with B. burgdorferi outer surface protein C. The binding of Salp15 protected B. burgdorferi from antibody-mediated killing in vitro and provided spirochaetes with a marked advantage when they were inoculated into naive mice or animals previously infected with B. burgdorferi. Moreover, RNA interference-mediated repression of salp15 in I. scapularis drastically reduced the capacity of tick-borne spirochaetes to infect mice. These results show the capacity of a pathogen to use a secreted arthropod protein to help it colonize the mammalian host.
The molecular basis of how Borrelia burgdorferi (Bb), the Lyme disease spirochete, maintains itself in nature via a complex life cycle in ticks and mammals is poorly understood. Outer surface (lipo)protein A (OspA) of Bb has been the most intensively studied of all borrelial molecular constituents, and hence, much has been speculated about the potential role(s) of OspA in the life cycle of Bb. However, the precise function of OspA (along with that of its close relative and operonic partner, outer surface [lipo]protein B [OspB]) heretofore has not been directly determined, due primarily to the inability to generate an OspA/B-deficient mutant from a virulent strain of Bb. In this study, we created an OspA/B-deficient mutant of an infectious human isolate of Bb (strain 297) and found that OspA/B function was not required for either Bb infection of mice or accompanying tissue pathology. However, OspA/B function was essential for Bb colonization of and survival within tick midguts, events crucial for sustaining Bb in its natural enzootic life cycle.
The Lyme disease agent Borrelia burgdorferi naturally persists in a cycle that primarily involves ticks and mammals. We have now identified a tick receptor (TROSPA) that is required for spirochetal colonization of Ixodes scapularis. B. burgdorferi outer surface protein A, which is abundantly expressed on spirochetes within the arthropod and essential for pathogen adherence to the vector, specifically bound to TROSPA. TROSPA mRNA levels in ticks increased following spirochete infestation and decreased in response to engorgement, events that are temporally linked to B. burgdorferi entry into and egress from the vector. The blockade of TROSPA by TROSPA antisera or by the repression of TROSPA expression via RNA interference reduced B. burgdorferi adherence to the I. scapularis gut in vivo, thereby preventing efficient colonization of the vector and subsequently reducing pathogen transmission to the mammalian host. Identification of an I. scapularis receptor for B. burgdorferi is the first step toward elucidating arthropod ligands that are required for survival of spirochetes in nature.
Outer surface protein C (OspC) is a differentially expressed major surface lipoprotein of Borrelia burgdorferi. ospC is swiftly upregulated when spirochetes leave the Ixodes scapularis tick gut, migrate to the salivary gland, and exit the arthropod vector. Here we show that OspC strongly binds to the tick salivary gland, suggesting a role for OspC in spirochete adherence to this tissue. In vivo studies using a murine model of Lyme borreliosis showed that while OspC F(ab) 2 fragments did not influence either the viability of spirochetes or ospC gene expression, they did interfere with B. burgdorferi invasion of tick salivary glands. We then generated ospC knockout spirochetes in an infectious clone of B. burgdorferi and examined them within the vector. OspC-deficient or wild-type spirochetes persisted equally within the gut of unfed ticks and multiplied during the tick engorgement; however, unlike wild-type B. burgdorferi, the mutants were unable to invade salivary glands. Salivary gland colonization of OspC-deficient spirochetes was completely restored when this mutant was complemented in trans with a plasmid harboring the wild-type ospC gene. These studies conclusively demonstrate the importance of OspC in the invasion of tick salivary glands by B. burgdorferi, a critical step in the transmission of spirochetes from the arthropod vector to the mammalian host.
Lyme disease is caused by transmission of the spirochete Borrelia burgdorferi from ticks to humans. Although much is known about B. burgdorferi replication, the routes and mechanisms by which it disseminates within the tick remain unclear. To better understand this process, we imaged live, infectious B. burgdorferi expressing a stably integrated, constitutively expressed GFP reporter. Using isolated tick midguts and salivary glands, we observed B. burgdorferi progress through the feeding tick via what we believe to be a novel, biphasic mode of dissemination. In the first phase, replicating spirochetes, positioned at varying depths throughout the midgut at the onset of feeding, formed networks of nonmotile organisms that advanced toward the basolateral surface of the epithelium while adhering to differentiating, hypertrophying, and detaching epithelial cells. In the second phase of dissemination, the nonmotile spirochetes transitioned into motile organisms that penetrated the basement membrane and entered the hemocoel, then migrated to and entered the salivary glands. We designated the first phase of dissemination "adherence-mediated migration" and provided evidence that it involves the inhibition of spirochete motility by one or more diffusible factors elaborated by the feeding tick midgut. Our studies, which we believe are the first to relate the transmission dynamics of spirochetes to the complex morphological and developmental changes that the midgut and salivary glands undergo during engorgement, challenge the conventional viewpoint that dissemination of Lyme disease-causing spirochetes within ticks is exclusively motility driven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.