This dissertation investigates the minimization of part design with self-locating features. The research focuses primarily on self-fastening characteristics, standardization of parts, and minimal use of fasteners. Further, the present research studies the design for base parts in the construction of a moving joint system, in order to locate potential part and system design improvements. This process may then be extended to industrial applications in the manufacturing industry. Relatively little work to date has examined the significance of Design for Manufacturing Techniques (DFMT), with their inherent machine element systems and machining parameters to investigate which DFMT has the most influence on cost reduction and increasing throughput, and under which circumstances. As such, this dissertation analyzes the inter-operational and synergistic elements of the DFMT, machine element systems, and machining parameters. The parametric specifications for the DFMT are examined and integrated with the cost and productivity-related information. In sum, this research applies DFMT to product design.