The human FMR1 gene contains an unstable CGG-repeat in its 5′ untranslated region. The repeat length in the normal population is polymorphic (5-54 CGG-repeats). Individuals carrying lengths beyond 200 CGGs (i.e. the full mutation) show hypermethylation and as a consequence gene silencing of the FMR1 gene. The absence of the gene product FMRP causes the fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation (PM), which is defined as a repeat length between 55-200 CGGs, can develop a progressive neurodegenerative syndrome: fragile X-associated tremor/ataxia syndrome (FXTAS). The high FMR1 mRNA levels observed in cells from PM carriers have led to the hypothesis that FXTAS is caused by a pathogenic RNA gain-of-function mechanism. Apart from tremor/ataxia, specific psychiatric symptoms have been described in PM carriers with or without FXTAS. Since these symptoms could arise from elevated stress hormone levels, we investigated hypothalamicpituitary-adrenal (HPA) axis regulation using a knock-in mouse model with an expanded CGGrepeat in the PM range (>98 repeats) in the Fmr1 gene, which shows repeat instability, and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. We show elevated levels of corticosterone in serum and ubiquitin-positive inclusions in both the pituitary and adrenal gland of 100-week old animals. In addition, we demonstrate ubiquitin-positive © 2008 Elsevier Ltd. All rights reserved. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Financial disclosuresWe declare no conflict of interest.
HHS Public Access
Author Manuscript Author ManuscriptAuthor ManuscriptAuthor Manuscript inclusions in the amygdala from aged expanded CGG-repeat mice. We hypothesize that altered regulation of the HPA axis and the amygdala and higher stress hormone levels in the mouse model for FXTAS may explain associated psychological symptoms in humans.