It is well established that classical one-parameter distributions lack the flexibility to model the characteristics of a complex random phenomenon. This fact motivates clever generalizations of these distributions by applying various mathematical schemes. In this paper, we contribute in extending the one-parameter length-biased Maxwell distribution through the famous Marshall–Olkin scheme. We thus introduce a new two-parameter lifetime distribution called the Marshall–Olkin length-biased Maxwell distribution. We emphasize the pliancy of the main functions, strong stochastic order results and versatile moments measures, including the mean, variance, skewness and kurtosis, offering more possibilities compared to the parental length-biased Maxwell distribution. The statistical characteristics of the new model are discussed on the basis of the maximum likelihood estimation method. Applications to simulated and practical data sets are presented. In particular, for five referenced data sets, we show that the proposed model outperforms five other comparable models, also well known for their fitting skills.