A traditional random variable X is a function that maps from a stochastic process to the real line (X,<=,d,+,.), where R is the set of real numbers, <= is the standard linear order relation on R, d(x,y)=|x-y| is the usual metric on R, and (R, +, .) is the standard field on R. has demonstrated that this definition of random variable is often a poor choice for computing statistics when the stochastic process that X maps from has structure that is dissimilar to that of the real line. Greenhoe(2015b) has further proposed an alternative statistical system, that rather than mapping a stochastic process to the real line, instead maps to a weighted graph that has order and metric geometry structures similar to that of the underlying stochastic process. In particular, ideally the structure X maps from and the structure X maps to are, with respect to each other, both isomorphic and isometric.Mapping to a weighted graph is useful for analysis of a single random variable.for example the expectation EX of X can be defined simply as the center of its weighted graph. However, the mapping has limitations with regards to a sequence of random variables in performing sequence analysis (using for example Fourier analysis or wavelet analysis), in performing sequence processing (using for example FIR filtering or IIR filtering), in making diagnostic measurements (using a post-transform metric space), or in making goptimal h decisions (based on gdistance h measurements in a metric space or more generally a distance space). Rather than mapping to a weighted graph, this paper proposes instead mapping to an ordered distance linear space Y=(R^n,<=,d,+,.,R,+,x), where (R,+,x) is a field, + is the vector addition operator on R^n
Order and Metric Compatible Symbolic Sequence Processing
DANIEL J. GREENHOEAbstract: A traditional random variable is a function that maps from a stochastic process to the "real line" (ℝ, ≤, , +, ⋅), where ℝ is the set of real numbers, ≤ is the standard linear order relation on ℝ, ( , ) ≜ | − | is the usual metric on ℝ, and (ℝ, +, ⋅) is the standard field on ℝ.Greenhoe (2015b) has demonstrated that this definition of random variable is often a poor choice for computing statistics when the stochastic process that maps from has structure that is dissimilar to that of the real line. Greenhoe (2015b) has further proposed an alternative statistical system, that rather than mapping a stochastic process to the real line, instead maps to a weighted graph that has order and metric geometry structures similar to that of the underlying stochastic process. In particular, ideally the structure maps from and the structure maps to are, with respect to each other, both isomorphic and isometric.Mapping to a weighted graph is useful for analysis of a single random variable-for example the expectation of can be defined simply as the center of its weighted graph. However, the mapping has limitations with regards to a sequence of random variables in performing sequence analysis (using for example Fourier analysis or wavelet analysis),...