The high potential of metal fibres for various technical applications including filtration, electrical, heat and cut resistance or composite applications is still not fully exploited due to their high production costs. This paper presents the development of a new process chain for spinning 100% metal spun yarns from planed metal staple fibres as an alternative to conventional metal fibres. The developed spinning process chain begins with a stretch breaking process to create metal staple fibre sliver with a narrow fibre length distribution and defined mean fibre length. Next, a drafting process on a draw frame is performed in order to produce highly uniform metal staple fibre sliver. This is the basis for the development of a flyer spinning process to realise high-performance metal spun yarn. Finally, the fundamental relationships between fibre properties, processing characteristics, semi-finished product properties and the performance of the resulting metal spun yarns are described in detail.