Membrane
lipids interact with proteins in a variety of ways, ranging
from providing a stable membrane environment for proteins to being
embedded in to detailed roles in complicated and well-regulated protein
functions. Experimental and computational advances are converging
in a rapidly expanding research area of lipid–protein interactions.
Experimentally, the database of high-resolution membrane protein structures
is growing, as are capabilities to identify the complex lipid composition
of different membranes, to probe the challenging time and length scales
of lipid–protein interactions, and to link lipid–protein
interactions to protein function in a variety of proteins. Computationally,
more accurate membrane models and more powerful computers now enable
a detailed look at lipid–protein interactions and increasing
overlap with experimental observations for validation and joint interpretation
of simulation and experiment. Here we review papers that use computational
approaches to study detailed lipid–protein interactions, together
with brief experimental and physiological contexts, aiming at comprehensive
coverage of simulation papers in the last five years. Overall, a complex
picture of lipid–protein interactions emerges, through a range
of mechanisms including modulation of the physical properties of the
lipid environment, detailed chemical interactions between lipids and
proteins, and key functional roles of very specific lipids binding
to well-defined binding sites on proteins. Computationally, despite
important limitations, molecular dynamics simulations with current
computer power and theoretical models are now in an excellent position
to answer detailed questions about lipid–protein interactions.