High-temperature superconductivity exists in layered, square-planar cuprates, but is almost absent in most other Cu(II) compounds and in most Ag(II) and Au(II) compounds. Valence state II is quite unusual in silver and gold and often disproportionates to valence states I and III ("negative-U compounds"). The two-electron difference in oxidation state is suggestive of electron pairing, a prerequisite for superconductivity. In the present paper the connection between disproportionation and geometrical structure on one hand and superconductivity on the other is discussed by using the accepted theory for mixed valence complexes. It is concluded that absence of superconductivity in gold and silver compounds can be connected to the instability of oxidation state II and the large difference in equilibrium geometry between oxidation states I and III.