Taking the Ti-Al binary alloy as an example, this article studied the evaporation behavior of Al during the cold crucible induction skull melting (ISM) process of titanium alloys. A formula was deduced to predict the activity of Al in a molten Ti-Al binary system. The calculated activity of Al negatively deviates from an ideal solution. A model was established to judge the evaporation controlling mode and, on this basis, several conclusions were obtained. (1) The evaporation controlling mode of Al in molten Ti-Al transfers from the evaporation reaction controlling mode to the double controlling mode (diffusion and evaporation reaction) with increasing melt temperature (T ms ) and/or Al content (x Al ) and/or decreasing pressure (P) in the melting chamber. (2) The expression P Յ P crit (P crit Ϸ 0.44 P e(Al) ) is a criterion used to judge whether the evaporation is in the state of free evaporation. (3) The term P impe (P impe ϭ (3.5 to 4) P e(Al) ) is a critical value which impedes the evaporation loss. Almost all of common used ternary additions could enhance the activity of Al in molten Ti-Al and, accordingly, aggravate the evaporation of Al, except for Zr. The enhancing sequence is Y, Ni, Nb, Mn, V, Fe, Cr, Mo, Cu, Si, W, Mg, B, and Sn. The Al evaporation mass-transfer losses, measured from the melting experiments of several titanium aluminum alloys, were in reasonable agreement with the calculated results.