This paper reports on recent developments to improve the performance of hair vector hydrophone by means of several technological advancements in the fabrication procedures and corresponding sensor design. With fish's lateral line organs as prototypes, NEMS (Nano-Electromechanical System) vector hydrophone with directivity has been designed. This paper describes the meso-piezoresistance effect of resonant tunneling thin-film, and the NEMS hydrophone based on this effect is highly sensitive and small size. The application of bionics structure may improve the low-frequency sensitivity of hydrophone. The calibration test shows that NEMS vector hydrophone's receiving sensitivity is up to -170 dB (0dB = 1 V/lPa), has a good directional pattern in the form of ''8'' shape. The sea test shows that the direction of target can be detected by single NEMS vector hydrophone. In the anechoic tank, it has been verified that NEMS vector hydrophone can track the trajectory of the moving target.