2019
DOI: 10.52549/ijeei.v7i1.458
|View full text |Cite
|
Sign up to set email alerts
|

The methods of duo output neural network ensemble for prediction of coronary heart disease

Abstract: The occurrence of Coronary heart disease (CHD) is hard to predict yet, but the assessment of CHD risk for the next ten years is possible. The prediction of coronary heart disease can be modelled using multi-layer perceptron neural network (MLP-ANN). Prediction model with MLP-ANN has either positive or negative CHD output, which is a binary classification. A prediction model with binary classification requires determination of threshold value before the classification process which increases the uncertainty in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 14 publications
0
2
0
1
Order By: Relevance
“…Binary Particle Swarm Optimization (BPSO) merupakan hasil modifikasi dari algoritma sebelumnya yaitu Particle Swarm Optimization (PSO) dimana algoritma ini menggunakan metode pendekatan meta-heuristik yang terinspirasi dari sekumpulan burung dan ikan [17]. Algoritma PSO dikembangkan menjadi algoritma Binary PSO (BPSO) bertujuan untuk memudahkan dalam melakukan seleksi fitur.…”
Section: Feature Selection Dengan Bpsounclassified
“…Binary Particle Swarm Optimization (BPSO) merupakan hasil modifikasi dari algoritma sebelumnya yaitu Particle Swarm Optimization (PSO) dimana algoritma ini menggunakan metode pendekatan meta-heuristik yang terinspirasi dari sekumpulan burung dan ikan [17]. Algoritma PSO dikembangkan menjadi algoritma Binary PSO (BPSO) bertujuan untuk memudahkan dalam melakukan seleksi fitur.…”
Section: Feature Selection Dengan Bpsounclassified
“…We have employed iterative feature elimination for removing irrelevant features of heart disease dataset that does not have effect on the predictive outcome of the developed model to obtain good outcome on heart disease prediction. Iterative feature elimination removes irrelevant features that mislead the model's predictive capability and ultimately reduce the performance of classification model [20], [23]. Moreover, with reduced feature, the computational time required for model training and storage space requirement is optimized [22], [24].…”
Section: Iterative Feature Eliminationmentioning
confidence: 99%
“…As demonstrated in Table 5, the proposed model outperforms compared to the existing work. [5] 2019 NB, RF 86.81% Wan Hajarul [6] 2018 DT and RF 82.99% with RF Amin Ul Haq [8] 2018 SVM, DT, RF, NB, DT 86% with SVM Kathleen H. Miaoa [11] 2018 Deep neural network 83.67% Wiharto Wiharto [12] 2019 Ensemble classifier 88.33% Noor Basha [18] 2019 KNN, NB, SVM, DT 85%, with KNN Edsel Ing [19] 2019 SVM and LR 82.71% with LR Márcio Dias [20] 2020 SVM 87.71% Khaled Mohamad [21] 2020 SVM, NB 84.19% with SVM Pooja Rani [22] 2021 NB, LR, NB, SVM, RF 84.79% with SVM Suja Panicker [23] 2020 SVM 90% G. Magesh [24] 2020 RF 89.30% Ashir Javeed [25] 2020 Deep neural network 91.83% G. Saranya [ A hybrid approach to medical decision-making: diagnosis of heart disease … (Tamilarasi Suresh) 1837 5. CONCLUSION Automated intelligent approaches are crucial for timely prediction of heart disease.…”
Section: Comparative Studymentioning
confidence: 99%