The occurrence of Coronary heart disease (CHD) is hard to predict yet, but the assessment of CHD risk for the next ten years is possible. The prediction of coronary heart disease can be modelled using multi-layer perceptron neural network (MLP-ANN). Prediction model with MLP-ANN has either positive or negative CHD output, which is a binary classification. A prediction model with binary classification requires determination of threshold value before the classification process which increases the uncertainty in the classification process. Another weakness of the MLP-ANN model is the presence of overfitting. This study proposes a prediction model for coronary heart disease using the duo output artificial neural network ensemble (DOANNE) method to overcome the problems of overfitting and uncertainty of classification in MLP-ANN. This research method was divided into several stages, namely data acquisition, pre-processing, modelling into DOANNE, neural network ensemble training with Levenberg-Marquard (LM) algorithm, system performance testing, and evaluation. The results of the study showed that the use of DOANNE-LM method was able to provide a significant improvement from the MLP-ANN method, indicated by the results of statistical tests with pvalue <0.05.
The occurrence of Coronary heart disease (CHD) is hard to predict yet, but the assessment of CHD risk for the next ten years is possible. The prediction of coronary heart disease can be modelled using multi-layer perceptron neural network (MLP-ANN). Prediction model with MLP-ANN has either positive or negative CHD output, which is a binary classification. A prediction model with binary classification requires determination of threshold value before the classification process which increases the uncertainty in the classification process. Another weakness of the MLP-ANN model is the presence of overfitting. This study proposes a prediction model for coronary heart disease using the duo output artificial neural network ensemble (DOANNE) method to overcome the problems of overfitting and uncertainty of classification in MLP-ANN. This research method was divided into several stages, namely data acquisition, pre-processing, modelling into DOANNE, neural network ensemble training with Levenberg-Marquard (LM) algorithm, system performance testing, and evaluation. The results of the study showed that the use of DOANNE-LM method was able to provide a significant improvement from the MLP-ANN method, indicated by the results of statistical tests with pvalue <0.05.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.