The creep phenomenon is considered as one of the most important deformation mechanisms under working conditions. The present study has examined the microstructure and creep properties of Sn-9.0Zn-0.5Al solder alloy after adding a small amount of Antimony (Sb). Nominal compositions of Sb additions were chosen to be 0, 0.5, 1.0, and 1.5 wt.%. The minimum strain rate was reduced for the Sb containing solder alloy. The stress exponents, n, were found to be around 3.7 for all soldiers at 130˚C. The stress exponent increases as the temperature drops from 100˚C to 50˚C, except for the 1.0% Sb alloy, where n 5.3 -6.1 at all the temperature range (T = 50˚C, 100˚C and 130˚C). The results reveal that the Sb-containing solder alloys have better creep resistance with greater ductility than the Sb-free alloy due to solid solution strengthening, and intermetallic compound SnSb particle hardening.