The plus-end microtubule (MT) motor kinesin-1 is essential for normal development, with key roles in the nervous system. Kinesin-1 drives axonal transport of membrane cargoes to fulfill the metabolic needs of neurons and maintain synapses. We have previously demonstrated that kinesin-1, in addition to its well-established role in organelle transport, can drive MT-MT sliding by transporting "cargo" MTs along "track" MTs, resulting in dramatic cell shape changes. The mechanism and physiological relevance of this MT sliding are unclear. In addition to its motor domain, kinesin-1 contains a second MT-binding site, located at the C terminus of the heavy chain. Here, we mutated this C-terminal MT-binding site such that the ability of kinesin-1 to slide MTs is significantly compromised, whereas cargo transport is unaffected. We introduced this mutation into the genomic locus of kinesin-1 heavy chain (KHC), generating the Khc mutA allele. Khc mutA neurons displayed significant MT sliding defects while maintaining normal transport of many cargoes. Using this mutant, we demonstrated that MT sliding is required for axon and dendrite outgrowth in vivo. Consistent with these results, Khc mutA flies displayed severe locomotion and viability defects. To test the role of MT sliding further, we engineered a chimeric motor that actively slides MTs but cannot transport organelles. Activation of MT sliding in Khc mutA neurons using this chimeric motor rescued axon outgrowth in cultured neurons and in vivo, firmly establishing the role of sliding in axon outgrowth. These results demonstrate that MT sliding by kinesin-1 is an essential biological phenomenon required for neuronal morphogenesis and normal nervous system development.kinesin-1 | microtubules | Drosophila | axon outgrowth | dendrite outgrowth N eurons are the basic unit of the nervous system, forming vast networks throughout the body that communicate using receptorligand machinery located in long cellular projections called axons and dendrites. Learning how these processes form is key to understanding the early development and pathology of the nervous system. Microtubules (MTs) and actin microfilaments have been implicated in neurite outgrowth, with many studies focusing on the growth cone at the tip of the axon. Previous models suggest that the driving forces for neurite outgrowth are MT polymerization and the treadmilling of F-actin (1, 2). However, other studies demonstrate that F-actin is dispensable to outgrowth and neurites extend even in the absence of F-actin (3-5).Our group has found that the motor protein kinesin-1 can rearrange the MT network by sliding MTs against each other (6). We have shown that kinesin-1 is required for MT sliding in cultured neurons and kinesin-1 depletion inhibits both neurite outgrowth and regeneration (7,8). Additionally, we have observed MT sliding in axons as well as MTs pushing on the axon tip (9). Recent studies from other groups have also implicated MT translocation in axon extension and dendritic organization (10-12). Based on th...