Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morphology. We describe p140Cap/SNIP, a regulator of Src tyrosine kinase, as an EB3 interacting partner that is predominantly localized to spines and enriched in the postsynaptic density. Inhibition of microtubule dynamics, or knockdown of either EB3 or p140Cap, modulates spine shape via regulation of the actin cytoskeleton. Fluorescence recovery after photobleaching revealed that EB3-binding is required for p140Cap accumulation within spines. In addition, we found that p140Cap interacts with Src substrate and F-actin-binding protein cortactin. We propose that EB3-labeled growing microtubule ends regulate the localization of p140Cap, control cortactin function, and modulate actin dynamics within dendritic spines, thus linking dynamic microtubules to spine changes and synaptic plasticity.
During cell division, mitotic spindles are assembled by microtubule-based motor proteins. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family. Hypotheses for bipolar spindle formation include the 'push-pull mitotic muscle' model, in which kinesin-5 and opposing motor proteins act between overlapping microtubules. However, the precise roles of kinesin-5 during this process are unknown. Here we show that the vertebrate kinesin-5 Eg5 drives the sliding of microtubules depending on their relative orientation. We found in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at approximately 20 nm s(-1) towards the plus-ends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at approximately 40 nm s(-1), comparable to spindle pole separation rates in vivo. Furthermore, we found that Eg5 can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate how members of the kinesin-5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting microtubules into bundles that are subsequently polarized by relative sliding.
Microtubules are one of the major cytoskeletal components of neurons, essential for many fundamental cellular and developmental processes, such as neuronal migration, polarity, and differentiation. Microtubules have been regarded as critical structures for stable neuronal morphology because they serve as tracks for long-distance transport, provide dynamic and mechanical functions, and control local signaling events. Establishment and maintenance of the neuronal microtubule architecture requires tight control over different dynamic parameters, such as microtubule number, length, distribution, orientations, and bundling. Recent genetic studies have identified mutations in a wide variety of tubulin isotypes and microtubule-related proteins in many of the major neurodevelopmental and neurodegenerative diseases. Here, we highlight the functions of the neuronal microtubule cytoskeleton, its architecture, and the way its organization and dynamics are shaped by microtubule-related proteins.
Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. We found that moderate microtubule stabilization decreased scar formation after spinal cord injury (SCI) in rodents via various cellular mechanisms, including dampening of TFG-β signalling. It prevented the accumulation of chondroitin sulfate proteoglycans (CSPGs) and rendered the lesion site permissive for axon regeneration of growth competent sensory neurons. Additionally, microtubule stabilization promoted growth of CNS axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow. Manipulation of microtubules may offer the basis for a multi-targeted therapy after SCI.
In neurons, the distinct molecular composition of axons and dendrites is established through polarized targeting mechanisms, but it is currently unclear how nonpolarized cargoes, such as mitochondria, become uniformly distributed over these specialized neuronal compartments. Here, we show that TRAK family adaptor proteins, TRAK1 and TRAK2, which link mitochondria to microtubule-based motors, are required for axonal and dendritic mitochondrial motility and utilize different transport machineries to steer mitochondria into axons and dendrites. TRAK1 binds to both kinesin-1 and dynein/dynactin, is prominently localized in axons, and is needed for normal axon outgrowth, whereas TRAK2 predominantly interacts with dynein/dynactin, is more abundantly present in dendrites, and is required for dendritic development. These functional differences follow from their distinct conformations: TRAK2 preferentially adopts a head-to-tail interaction, which interferes with kinesin-1 binding and axonal transport. Our study demonstrates how the molecular interplay between bidirectional adaptor proteins and distinct microtubule-based motors drives polarized mitochondrial transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.