BackgroundAxon degeneration, a key pathological event in many neurodegenerative diseases and injury, can be induced by somatodendritic excitotoxin exposure. It is currently unclear, however, whether excitotoxin-induced axon degeneration is mechanistically similar to Wallerian degeneration, which occurs following axon transection, but does not involve axonal caspase activation.ResultsWe have used mouse primary cortical neurons at 9 days in vitro, in a compartmented culture model that allows separation of the axon from the soma, to examine the pathological cascade of excitotoxin-induced axon degeneration. Excitotoxicity induced by chronic exposure to kainic acid, resulted in axonal fragmentation, which was associated with activation of caspase-3 in the axonal compartment. To examine the role of microtubules in these events, the microtubule-stabilizing agent, taxol, was added to either the axonal or somatodendritic compartment. Our results demonstrated that microtubule stabilization of axons resulted in a significant reduction in the number of fragmented axons following excitotoxin exposure. Interestingly, taxol exposure to either the somatodendritic or axonal compartment resulted in reduced caspase-3 activation in axons, suggesting that caspase activation is a downstream event of microtubule destabilization and involves signalling from the cell soma.ConclusionThese data suggest that excitotoxin-induced axon degeneration shows some mechanistic differences to Wallerian degeneration, and that microtubule stabilization may assist in protecting nerve cells from excitotoxic effects.