2021
DOI: 10.15408/jti.v13i2.19610
|View full text |Cite
|
Sign up to set email alerts
|

The Modeling of "Mustahiq" Data Using K-Means Clustering Algorithm and Big Data Analysis (Case Study: Laz)

Abstract: There are a lot of Mustahiq data in LAZ (Lembaga Amil Zakat) which is spread in many locations today. Each LAZ has Mustahiq data that is different in type from other LAZ. There are differences in Mustahiq data types so that data that is so large cannot be used together even though the purpose of the data is the same to determine Mustahiq data. And to find out whether the Mustahiq data is still up to date (renewable), of course it will be very difficult due to the types of data types that are not uniform or dif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
0
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 4 publications
0
0
0
1
Order By: Relevance
“…Pengelompokan data industri rumahan dapat dibangun tentunya diperlukan sebuah algoritma pada sistem yang mampu menghasilkan pengelompokan data industri rumahan kedalam klasifikasi pemula, berkembang dan maju. Algoritma K-means dipilih oleh kebanyakan peneliti untuk menyelesaikan masalah dalam pengelompokan data [2][3][4][5][6]. Namun, algoritma Kmeans ternyata belum memberikan solusi untuk menghasilkan kualitas klaster yang optimal [7].…”
Section: Pendahuluanunclassified
“…Pengelompokan data industri rumahan dapat dibangun tentunya diperlukan sebuah algoritma pada sistem yang mampu menghasilkan pengelompokan data industri rumahan kedalam klasifikasi pemula, berkembang dan maju. Algoritma K-means dipilih oleh kebanyakan peneliti untuk menyelesaikan masalah dalam pengelompokan data [2][3][4][5][6]. Namun, algoritma Kmeans ternyata belum memberikan solusi untuk menghasilkan kualitas klaster yang optimal [7].…”
Section: Pendahuluanunclassified
“…Processing large amounts of data, such as student data surely need many resources: human resources, cost, and time [1]. Human-error cases were also found where sometimes the data isn't efficient enough and many error occurred.…”
Section: Introductionmentioning
confidence: 99%
“…People mainly rely on experience and domain knowledge (Peng, 2022). The classification of things is mainly in the qualitative sense, and it is difficult to achieve the quantitative sense (Buslim et al, 2021). However, it is for the classification problems, and the ancient traditional taxonomy based only on experience and field knowledge is powerless (Ravuri & Vasundra, 2020).…”
Section: Introductionmentioning
confidence: 99%