A fully functional myostatin gene inhibits muscle fiber growth. The objective of the present study was to quantify the association between 21 known myostatin mutations with both calving and carcass traits in 12 cattle breeds. The myostatin genotypes of 32,770 dam-progeny combinations were used in the association analysis of calving dystocia, with the genotypes of 129,803 animals used in the mixed model association analyses of carcass weight, conformation, and fat score. The mixed model included additive genetic, maternal, and permanent environmental effects where appropriate. The mutant genotypes of nt821, Q204X, and F94L were all associated (P < 0.01) with more calving difficulty when present in either the dam or the progeny. The nt821 deletion had the greatest association with calving difficulty when the homozygous deletion was present in either the calf (0.37 points greater calving difficulty score relative to calves carrying no copies of the deletion based on a one to four scale) or the dam (1.30 points greater calving difficulty score relative to dams carrying no copies of the deletion), although the association between the calf’s nt821 genotype and calving difficulty differed depending on the nt821 genotype of the dam. With the exception of nt748_78, nt414, and nt374_51, all other seven segregating myostatin variants were associated (range of allele substitution effect size relative to animals with no copies of the mutant allele) with carcass weight (2.36 kg lighter to 15.56 kg heavier), all 10 segregating variants with conformation (0.15 units less conformed to 2.24 units more conformed assessed on a scale of 1 to 15), and all segregating variants other than E226X with carcass fat (0.23 units less carcass fat cover to 3.85 units more carcass fat cover assessed on a scale of 1 to 15). Of these, the F94L, Q204X, and nt821 mutations generally had the greatest association with all three carcass traits, giving rise to heavier and more conformed carcasses. Despite the antagonistic genetic relationship between calving difficulty and carcass traits, the nt374_51, F94L, and E226X mutations were all associated with improved carcass merit while having minimal expected consequences on calving difficulty. Thus, animals carrying these mutation(s) may have favorable genetic merit for calving difficulty and carcass merit. Furthermore, depending on the dam genotype, a bull with two copies of the nt821 mutation can produce progeny with improved carcass merit while minimizing calving problems.