A variety
of imaging techniques are available for detecting biological
processes with sufficient penetration depth and temporal resolution.
However, inflammation, cardiovascular, and cancer-related disorders
might be difficult to diagnose with typical bioimaging methods because
of the lack of resolution in the imaging of deep tissues. Therefore,
nanomaterials are the most promising candidate to overcome this hurdle.
This review is on the utilization of carbon-based nanomaterials (CNMs),
ranging from zero-dimension (0D) to three-dimension (3D), in the development
of fluorescence (FL) imaging, photoacoustic imaging (PAI), and biosensing
for the early detection of cancer. Nanoengineered CNMs, such as graphene,
carbon nanotubes (CNTs), and functional carbon quantum dots (QDs),
are being further studied for multimodal biometrics and targeted therapy.
CNMs have many advantages over conventional dyes in FL sensing and
imaging, including clear emission spectra, long photostability, low
cost, and high FL intensity. Nanoprobe production, mechanical illustrations,
and diagnostic therapeutic applications are the key areas of focus.
The bioimaging technique has facilitated a greater understanding of
the biochemical events underlying multiple disease etiologies, consequently
facilitating disease diagnosis, evaluation of therapeutic efficacy,
and drug development. This review may lead to the development of interdisciplinary
research in bioimaging and sensing as well as possible future concerns
for researchers and medical physicians.