Wrapping of a single-walled carbon nanotube (SWNT) was examined by using a poly[( m-phenylenevinylene)- alt-( p-phenylenevinylene)] (PmPV) derivative. The polymer's intrinsic ability in forming a helical conformation was found to play an essential role in the separation of nanotubes. Among about 15 tubes present in the pure SWNT (HiPcoTM) sample, the polymer was found to selectively pick up the tubes (11,6), (11,7) and (12,6), which correspond to tube diameters of 1.19, 1.25 and 1.24 nm, respectively. The SWNTs of smaller diameters were held loosely by the PmPV, and were gradually dropped out under centrifugation. The suspension solution prepared from the SWNT and PmPV was not permanently stable, with precipitation occurring after a few weeks. Irradiation in the UV-vis region exhibited a catalytic effect to shorten the precipitation time to hours. Those tubes, which were held loosely by PmPV, were quickly separated from the suspension during the irradiation process.
The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A vital step in the combat towards COVID-19 is a successful screening of contaminated patients, with one of the key screening approaches being radiological imaging using chest radiography. This study aimed to automatically detect COVID-19 pneumonia patients using digital chest x-ray images while maximizing the accuracy in detection using deep convolutional neural networks (DCNN). The dataset consists of 864 COVID-19, 1345 viral pneumonia and 1341 normal chest x-ray images. In this study, DCNN based model Inception V3 with transfer learning have been proposed for the detection of coronavirus pneumonia infected patients using chest X-ray radiographs and achieved more than 96% accuracy. The results demonstrate that transfer learning proved to be effective, showed robust performance and easily deployable approach for COVID-19 detection.
A nanocomposite drug delivery system (Ti3C2@Met@CP) can be used for the synergistic treatment of tumors through photothermal/photodynamic/chemotherapy and can also inhibit tumor recurrence and metastasis by activating the immune system.
Azobenzene-containing compounds were covalently attached onto Si(111) surfaces via Si-O linkages using a two-step procedure. The modified Si(111) surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy measurements. The monolayer surface showed preferably chemical stability. Switchable photoisomerizability of azobenzene molecules on these modified surfaces was observed in response to alternating UV and visible light exposure. The measured conductivity showed distinct difference with trans and cis forms of azobenzene compounds on as-modified Si(111) surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.