The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A vital step in the combat towards COVID-19 is a successful screening of contaminated patients, with one of the key screening approaches being radiological imaging using chest radiography. This study aimed to automatically detect COVID-19 pneumonia patients using digital chest x-ray images while maximizing the accuracy in detection using deep convolutional neural networks (DCNN). The dataset consists of 864 COVID-19, 1345 viral pneumonia and 1341 normal chest x-ray images. In this study, DCNN based model Inception V3 with transfer learning have been proposed for the detection of coronavirus pneumonia infected patients using chest X-ray radiographs and achieved more than 96% accuracy. The results demonstrate that transfer learning proved to be effective, showed robust performance and easily deployable approach for COVID-19 detection.
Three N-substituted selenium-bridged diiron complexes [{(mu-SeCH2)2NC6H4R}Fe2(CO)6] (R = 4-NO2, 7; R = H, 8; R = 4-CH3, 9) were firstly prepared as biomimetic models for the Fe-Fe hydrogenases active site. Models could be generated by the convergent reaction of [(mu-HSe)2Fe2(CO)6] (6) with N,N-bis(hydroxymethyl)-4-nitroaniline (1), N,N-bis(hydroxymethyl)aniline (2), and N,N-bis(hydroxymethyl)-4-methylaniline (3) in 46-52% yields. All the new complexes were characterized by IR, 1H and 13C NMR and HRMS spectra and their molecular structures were determined by single-crystal X-ray analysis. The redox properties of and their dithiolate analogues [{(mu-SCH2)2NC6H4R}Fe2(CO)6] (R = 4-NO2, 7s; R = H, 8s; R = 4-CH3, 9s ) were evaluated by cyclic voltammograms. The electrochemical proton reduction by and were investigated in the presence of p-toluenesulfonic acid (HOTs) to evaluate the influence of changing the coordinating S atoms of the bridging ligands to Se atoms on the electrocatalytic activity for proton reduction.
A nanocomposite drug delivery system (Ti3C2@Met@CP) can be used for the synergistic treatment of tumors through photothermal/photodynamic/chemotherapy and can also inhibit tumor recurrence and metastasis by activating the immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.